
KAIST 연구진이 고온 실험을 통해서만 가능했던 합금의 융해 특성을 인공지능(AI)으로 해결했다.
KAIST는 신소재공학과 홍승범 교수 연구팀이 미국 노스웨스턴대 크리스 울버튼 교수팀과 국제 공동연구를 통해, 밀도범함수이론(DFT) 기반의 형성에너지(합금이 얼마나 안정적인지를 나타내는 값) 데이터를 활용해 합금이 녹을 때 성분이 유지되는지를 예측하는 고정확도 머신러닝 모델을 개발했다고 14일 밝혔다.
연구팀은 밀도범함수이론을 통해 계산한 형성에너지와 기존의 실험적 융해 반응 데이터를 머신러닝에 결합해 4536개의 이원계 화합물에 대한 융해 반응 유형을 학습한 후, 그 예측 모델을 구성했다. 다양한 머신러닝 알고리즘 중 특히 ‘XGBoost’ 기반 분류 모델이 합금이 잘 섞이는지 여부에 대해 가장 높은 정확도를 보였으며, 약 82.5%의 예측 정확도를 달성했다.
연구팀은 또한 샤플리(Shapley) 기법을 활용해 모델의 주요 특징(feature)들을 분석했으며 이 중에서도 기울기 변화가 크다는 것은 그 조성에서 에너지적으로 매우 유리한(안정한) 상태가 형성된다는 뜻으로 ‘형성에너지 곡선의 기울기 변화(convex hull sharpness)’가 가장 중요한 인자로 도출됐다.
이번 연구의 가장 큰 의의는 고온 실험 없이도 소재의 융해 반응 경향성을 예측할 수 있다는 점이다. 이는 특히 고엔트로피 합금이나 초내열 합금 등 실험이 어려운 소재 군에서 매우 유용하며, 향후 복잡한 다성분계 합금 설계에도 확장될 수 있다.
또한 AI 모델이 도출한 주요 물리량은 합금이 잘 변하고 안정적인지 등에 대한 실제 실험 결과와 높은 일치도를 보였고, 향후 다양한 금속재료 개발 및 구조 안정성 예측 등 널리 활용될 수 있을 것으로 기대된다.
홍승범 KAIST 교수는 “이번 연구는 계산과 실험 데이터, 그리고 머신러닝의 융합을 통해 기존의 경험적 합금 설계 방식에서 벗어나 데이터 기반의 예측적 소재 개발이 가능하다는 가능성을 보여준 사례”라며 “향후 생성형 모델, 강화학습 등의 최신 AI 기술을 접목하면 완전히 새로운 합금을 자동으로 설계하는 시대가 열릴 것”이라고 말했다.
신소재공학과 최영우 박사과정 연구원이 제1 저자로 참여한 이번 연구는 미국물리협회(American Institute of Physics, AIP)에서 발간하는 머신러닝 분야의 권위 있는 학술지인 ‘APL 머신러닝(Machine Learning)’ 5월호에 게재 및 ‘특집 논문(Featured article)’로 선정됐다. 한편 이번 연구는 과학기술정보통신부와 한국연구재단의 지원으로 수행됐다.
헬로티 이창현 기자 |