KAIST 연구팀이 기존 반도체 공정 방식의 한계를 극복하고 맞춤형 3차원 뇌신경 칩 제작 기술을 개발했다. 뇌과학 및 뇌공학 연구 플랫폼의 설계 자유도와 활용성을 크게 확장할 수 있는 성과로 평가된다. KAIST는 25일 남윤기 바이오및뇌공학과 교수 연구팀이 3D 프린터와 모세관 현상을 활용해 체외 배양 신경조직을 위한 3차원 미세전극 칩 제작 플랫폼을 개발했다고 밝혔다. 체외 배양 뇌 신경조직은 뇌 연구에 활용되는 단순화된 모델로 주목받아왔지만, 기존 장치는 반도체 공정 기반 제작 방식에 의존해 입체적 구조 구현에 한계가 있었다. 최근 3D 프린팅 기술이 제안되긴 했으나 전도성 물질 패터닝과 절연체 도포, 전극 오프닝 순서를 거치는 방식은 설계 자유도 측면에서 제약이 많았다. 연구팀은 공정 순서를 뒤집는 접근법을 도입했다. 먼저 3D 프린터로 미세 터널이 형성된 속이 빈 절연체 구조물을 출력한 뒤, 전도성 잉크가 모세관 현상으로 내부를 채우도록 해 전극과 배선을 형성했다. 이를 통해 복잡한 구조물 내에 미세전극을 자유롭게 배치한 3차원 지지체-미세전극 칩 제작이 가능함을 입증했다. 새 플랫폼은 프로브형, 큐브형, 모듈형 등 다양한 형태로 구현할 수 있으며
GIST-KAIST, 화재 예방 ‘나노광학 온도 센서’ 개발 광주과학기술원(GIST) 정현호 교수와 한국과학기술원(KAIST) 송영민 교수 공동 연구팀이 배터리 내부 온도가 위험 수준에 도달하기 전인 80도 이하에서 열폭주 위험을 실시간으로 감지할 수 있는 나노광학 온도 센서를 개발했다. 전기차나 스마트폰 배터리 발열을 조기에 포착해 화재·폭발 사고를 예방할 수 있는 원천 기술이라는 점에서 주목된다. 배터리는 전기차, 웨어러블 기기, 도심항공모빌리티(UAM) 등 첨단 기술의 핵심 에너지원이지만 열폭주로 인한 사고가 잇따르고 있다. 배터리 내부 온도가 80도를 넘으면 분리막과 전해질이 손상되기 시작하며, 1분 이내에 500도 이상으로 치솟을 수 있다. 그러나 기존 열전대는 접촉 지점만 측정 가능하고, 적외선 카메라는 표면 재질에 따라 정확도가 떨어지는 한계가 있다. 열변색 물질 기반 센서도 반응 속도가 느려 실시간 감지에는 적합하지 않았다. 연구팀은 단원소 물질인 텔루륨의 특성에 주목했다. 텔루륨은 상온에서 80도로 올라가면 고체에서 준액체 상태로 바뀌며 가시광 영역에서 굴절률이 크게 변한다. 이를 활용해 10나노미터 두께의 텔루륨 초박막을 알루미늄 배터리 표
전기차나 스마트폰 배터리를 반복해 고속 충전하면 수명이 줄어드는 문제가 지적돼 왔다. 국내 연구진이 이러한 한계를 극복할 수 있는 새로운 배터리 음극 소재를 개발했다. UNIST 에너지화학공학과 강석주 교수, 고려대학교 곽상규 교수, 한국과학기술연구원(KIST) 안석훈 박사 공동연구팀은 흑연과 유기소재를 결합해 고속 충전 조건에서도 성능을 안정적으로 유지하는 하이브리드 음극 소재를 개발했다고 24일 밝혔다. 리튬이온 배터리 충전 과정은 리튬이온이 전자와 함께 음극 소재 안에 저장되는 과정이다. 그러나 고속 충전 시 리튬이온이 음극 내부로 충분히 들어가지 못하고 표면에 금속 리튬 형태로 쌓이는 ‘데드 리튬(dead lithium)’이 형성된다. 데드 리튬은 재사용되지 못해 배터리 용량을 줄이고 수명을 단축시키는 원인이다. 연구팀은 이를 해결하기 위해 흑연 입자(MCMB)와 곡면 나노그래핀(Cl-cHBC)을 1:1 비율로 혼합한 구조를 설계했다. 곡면 나노그래핀은 활처럼 비틀린 구조로 층간 간격이 넓고 나노 크기의 빈 공간이 많아 리튬이온이 빠르게 드나들 수 있다. 이 덕분에 리튬이온은 먼저 곡면 나노그래핀에 저장된 뒤 흑연으로 이동하는 ‘순차 삽입’ 과정을 거
KAIST는 생명과학과 정인경 교수와 기초과학연구원(IBS) 혈관 연구단 정원석 부연구단장(겸 KAIST 생명과학과 교수) 공동연구팀이 별아교세포 발달 과정에서 특정 유전자가 성인기 뇌 면역 반응을 조절하는 핵심 역할을 한다는 사실을 세계 최초로 규명했다고 24일 밝혔다. 이번 연구는 치매, 알츠하이머병 등 퇴행성 뇌 질환의 원인 규명과 치료 전략 수립에 중요한 단서를 제공할 것으로 평가된다. 연구팀은 쥐 모델을 이용해 뇌·척수에서 높은 비중을 차지하는 별아교세포의 발달 시기별 유전자 조절 프로그램을 분석했다. 그 결과, ‘NR3C1(Glucocorticoid Receptor)’ 유전자가 출생 직후 발달 단계에서 장기적 면역 반응 억제의 핵심 조절자임을 밝혀냈다. 특히 최신 ‘3차원 후성유전체 분석 기술’을 적용해 전사체, 염색질 접근성, 3차원 게놈 상호작용을 통합 분석한 결과, 발달 과정에서 55개의 주요 전사인자를 찾아냈고, 이 가운데 NR3C1이 아기 뇌 발달 초기에 면역 스위치 역할을 한다는 점이 확인됐다. NR3C1 유전자가 없는 경우 어린 시기에는 뇌 발달에 큰 문제가 없었지만, 성인기 자가면역성 뇌 질환이 발생하면 과도한 염증 반응이 나타나 병
광주과학기술원(GIST) 차세대에너지연구소 강홍규 책임연구원과 신소재공학과 이광희 교수 공동연구팀이 차세대 반투명 유기태양전지(ST-OPVs)의 투명성과 발전 효율을 동시에 높이는 기술을 개발했다. 이번 성과는 기존의 복잡한 다층 구조가 아닌 단순한 소자 설계만으로 투명도와 효율을 모두 확보할 수 있는 전략을 제시한 것으로, 반투명 유기태양전지가 실용화 가능한 차세대 에너지 기술임을 입증했다. 유기태양전지는 가볍고 유연하며 용액 공정을 통한 대량 생산이 가능해 건물 일체형 태양광(BIPV), 차량용 태양광(VIPV), 휴대 전자기기 등 다양한 응용이 가능하다. 특히 반투명 구조는 가시광선을 투과시키면서 근적외선만 선택적으로 흡수해 ‘태양광 창문’으로 활용할 수 있다. 하지만 지금까지는 투명도를 높이면 발전 효율이 떨어지고, 효율을 높이면 투명도가 낮아지는 상충관계(trade-off) 문제가 있었다. 연구팀은 가시광선을 흡수하는 전자주개(donor) 함량을 줄여 투명도를 높이고, 대신 정공 수송 첨가제(Me-4PACz)를 도입해 전하 이동 경로를 최적화했다. 이 첨가제는 광활성층 내부에 퍼지면서 동시에 전극 표면에 홀 전송층(HTL)을 스스로 형성해 전류 흐름
인하대학교는 우주 미세중력 환경이 우주인의 인지기능에 미치는 영향과 원인을 뇌신경회로칩 모델을 통해 규명했다고 19일 밝혔다. 이번 연구는 인하대 양수근·유혜진 교수팀과 동국대 방석영 교수팀, 광주과학기술원 조경래 교수팀이 공동으로 수행했다. 연구진은 뇌신경회로 모사칩을 활용해 미세중력 환경에서 신경세포의 연결성과 활성을 측정했다. 그 결과 지상 환경과 비교했을 때 신경세포의 연결성이 유의미하게 감소한다는 사실을 확인했다. 실험은 랫드 배아에서 추출한 신경아세포를 성숙한 신경세포로 분화시킨 뒤 뇌신경회로칩에 탑재해 미세중력 모사환경에서 배양하며 진행됐다. 관찰 결과, 세포 내 활성산소가 증가하고 칼슘 농도가 변했으며, 축삭돌기 밀도와 시냅스 형성이 감소했다. 또한 세포 스트레스 방어에 관여하는 유전자(HSPA4) 발현이 줄어든 반면, 신경퇴행 질환과 연관된 유전자(SNCA)는 발현이 증가한 것으로 나타났다. 미국항공우주국(NASA)은 우주인의 비가역적인 뇌인지기능 변화가 인류의 화성 탐사와 지속가능한 우주개척을 위해 반드시 해결해야 할 난제라고 지적해 왔다. 이에 따라 전 세계 연구진이 대응 방안을 찾기 위해 연구를 이어가고 있다. 양수근 인하대 의과대학 교
KAIST 연구진이 병원에 가지 않고도 옷을 입은 채 침대에 눕기만 하면 심전도(ECG)와 심박변이(HRV)를 실시간으로 측정할 수 있는 기술을 개발했다. 이번 기술은 원격 의료와 연계해 일상적인 심장 건강 모니터링 플랫폼으로 발전할 수 있으며, 수면·스트레스 분석 등 다양한 바이오 헬스케어 분야로 확장돼 환자 맞춤형 예방과 조기 진단에 기여할 수 있다. KAIST는 바이오및뇌공학과 김철 교수 연구팀이 ‘침대형 심장 모니터링 온디바이스 시스템’을 개발했다고 19일 밝혔다. 연구팀은 전자회로와 전극을 하나로 통합한 유연성 기판 센서를 제작해 정밀도를 높였으며, 온디바이스 신호처리를 통해 신호-잡음 분리, 심장 박동 신호(R-피크) 검출, 심박변이 분석을 실시간으로 수행할 수 있는 통합 시스템을 구현했다. 기존 심전도 측정은 병원을 방문해 옷을 벗고 피부에 습식 전극을 부착해야 하는 불편이 있었다. 이 때문에 장기 모니터링이 어렵고, 특히 고령자나 만성질환 환자는 일상적으로 활용하기 쉽지 않았다. 비접촉 방식은 외부 잡음에 취약하다는 한계도 있었다. 연구팀은 이러한 문제를 해결하기 위해 능동 차폐를 적용해 외부 잡음을 차단하고, 인체의 미세한 전류 변화를 안정적
인하대학교는 황예진 화학공학과 교수 연구팀이 새로운 고효율 폐플라스틱 업사이클링 전략을 제시했다고 18일 밝혔다. 연구팀은 상용 플라스틱인 폴리스타이렌(PS)의 재활용 한계를 극복하기 위해 볼-밀(Ball-mill) 분쇄법을 활용했다. 볼-밀 분쇄법은 쇠공을 넣은 원통형 장치를 진동시켜 재료에 기계적 힘을 가하는 방법으로, 빠른 반응 속도와 안전성, 지속가능성을 갖춰 다양한 반응에 응용 가능하다. PS는 연간 2500만t 이상 생산되는 범용 고분자로 포장재, 전자제품, 생활용품 등 다양한 분야에서 사용되지만, 매년 약 1700만t의 폐기물이 발생하며 대부분 매립되거나 버려진다. 안정적인 고리 구조 때문에 직접 기능화가 어렵고, 시도할 경우 사슬 절단이나 가교 같은 부작용이 나타나 업사이클링이 쉽지 않았다. 이를 해결하기 위해 연구팀은 고리 구조를 무너뜨려 반응성이 높은 구조를 만드는 버치(Birch) 환원 반응을 볼-밀 분쇄기에 적용하는 데 성공했다. 촉매, 첨가제, 용매, 진동수 등을 최적화한 결과 단 1분 만에 PS의 전환율과 디엔 함량을 극대화하면서 부작용을 최소화했다. 연구는 일반 PS뿐 아니라 다양한 작용기를 가진 PS 유도체와 발포 스티로폼, 커피
KAIST 전산학부 이재길 교수 연구팀이 군중 밀집을 정밀하게 예측할 수 있는 인공지능 기술을 개발했다고 17일 밝혔다. 이번 성과는 이태원 참사와 같은 다중밀집사고를 예방하고, 교통 혼잡 완화 및 감염병 대응에도 활용할 수 있을 것으로 기대된다. 군중 밀집 위험은 단순히 인원수로만 설명되지 않는다. 같은 인원이라도 유입 경로와 이동 방향에 따라 위험도가 달라진다. 연구팀은 이를 ‘시간에 따라 변하는 그래프(time-varying graph)’ 개념으로 모델링해, 특정 지역의 인원(정점 정보)과 지역 간 인구 흐름(간선 정보)을 동시에 분석하는 방식으로 접근했다. 이를 위해 ‘바이모달 학습(bi-modal learning)’을 도입했다. 공간적 관계와 시간적 변화를 함께 학습해 군중 밀집 패턴을 읽어내도록 설계한 것이다. 또한 3차원 대조 학습(3D contrastive learning)을 적용, 2차원 공간 정보에 시간 축을 추가해 ‘언제, 어디서, 어떻게 혼잡이 진행되는지’를 파악할 수 있게 했다. 검증 결과, 서울·부산·대구 지하철, 뉴욕 교통 데이터, 코로나19 확진자 수 등 실세계 데이터를 활용한 테스트에서 기존 최신 기술 대비 최대 76.1% 높은
인하대학교는 김홍근 기계공학과 교수 연구팀이 리튬이온전지(LIB)의 충전 시간을 최대 20% 단축할 수 있는 충전 프로토콜을 제시했다고 17일 밝혔다. 연구팀은 급속충전 과정에서 발생하는 리튬 석출(Li-plating) 문제를 해결하는 데 초점을 맞췄다. 리튬 석출은 음극 표면에 리튬 금속이 달라붙는 현상으로, 전지 수명 저하와 함께 화재·폭발로 이어질 수 있는 주요 원인으로 꼽힌다. 이를 위해 연구팀은 전기화학-열 모델에 베이지안 최적화(BO)를 결합하고, 전압 상한·온도 상한·리튬 석출 전위 한계 등을 제약 조건으로 반영했다. 특히 충전 상태(SOC)를 0~40%, 40~80%로 나눠 각각 최적화하는 바이섹션(BS-BO-MCC) 전략을 적용해 기존 단일 구간 방식보다 충전 시간을 최대 11% 더 단축했다. 실험은 상용 55.6Ah 파우치셀을 활용해 진행됐으며, 모델과 실제 측정 결과가 높은 수준의 일치를 보였다. 전 구간에서 리튬 석출 안전 마진을 확보하면서도 급속충전을 구현했고, 표준 CCCV 충전 대비 계면막 성장과 리튬 침적이 현저히 줄어든 사실을 전자현미경·X선 광전자 분광법으로 확인했다. 또한 예열 조건을 병행한 시험에서 연구팀 프로토콜은 629
인하대학교는 최우혁 고분자공학과 교수 연구팀이 부산대학교 김채빈 응용화학공학부 교수 연구팀과 공동 연구를 통해 재활용이 가능한 차세대 친환경 고분자 전해질을 개발했다고 16일 밝혔다. 차세대 전지의 핵심 소재인 고체 고분자 전해질은 높은 이온 전도성과 기계적 안정성을 모두 갖춰야 한다. 그러나 기존 열경화성 고분자는 한 번 굳으면 다시 가공하거나 재활용할 수 없어 환경 부담과 비용 문제가 있었다. 연구팀은 이를 해결하기 위해 동적 공유결합(CAN·covalent adaptable network)에 주목했다. 이 결합은 필요할 때 끊어지거나 다시 형성될 수 있어 재활용과 재가공이 가능하다. 해외에서 전자재료와 구조용 소재에는 적용 사례가 있었지만, 전해질로서 강한 접착력·기계적 탄성·이온 전도성을 동시에 확보한 경우는 드물었다. 특히 기존 연구에서 문제가 됐던 촉매 필요성과 물성·재활용성 간 충돌을 해결했다. 연구팀은 촉매가 필요 없는 동적 공유결합 기반 고분자 전해질을 설계해 사용 후 재활용과 리튬염 회수를 동시에 실현할 수 있는 소재를 선보였다. 연구는 β-아미노에스터 기반의 가역적 결합을 도입해 전지 구동 중에는 안정성을 유지하면서, 필요 시 가열을 통해
한국전기연구원은 전기물리연구센터 장성록 박사팀이 반도체 초정밀 공정에 활용할 수 있는 ‘바이어스용 맞춤형 펄스 전원(Tailored Pulse Power modulator for bias)’ 기술을 개발했다고 15일 밝혔다. 바이어스 장치는 플라스마 내부 이온이 반도체 웨이퍼에 충돌하도록 전압을 걸어 표면 식각, 세정, 박막 증착 공정을 수행하는 장치다. 기존에는 고주파(RF) 전원을 주로 활용했으나 파형의 단순성으로 미세 공정에서 정밀도가 떨어지는 문제가 있었다. 연구팀은 이를 보완하기 위해 펄스 전원 방식을 적용했다. 펄스 전원은 낮은 전력으로 충전 후 높은 전력으로 순간 방전하는 기술로, 전력 제어에 따라 웨이퍼를 원하는 깊이와 폭으로 가공할 수 있다. 특히 연구팀은 펄스 출력 시 발생하는 전력 손실을 줄이기 위해 ‘소프트 스위칭’ 기법을 적용했다. 전압과 전류가 0에 가까운 지점에서 스위칭을 유도해 소자의 부담을 줄이고 전력 손실을 78% 이상 감소시켰다. 이로써 발열 문제 해결, 전원장치 소형화, 전력 밀도 향상, 수명 연장 효과도 기대된다. 또한 경사형, 계단형 등 다양한 파형을 구현할 수 있는 맞춤형 펄스 전원 기술도 확보했다. 이는 반도체 공정
매터(Matter)는 CSA(Connectivity Standards Alliance)가 스마트 홈을 위해 개발한 오픈소스 연결 표준이다. 이는 와이파이, 스레드, 이더넷, 그리고 기기의 네트워크 등록(커미셔닝)을 위한 블루투스 LE 등과 같은 기존의 스마트 홈 무선 연결 기술 위에 구축되는 인터넷 프로토콜(IP) 기반 기술이다. 기본적으로, 매터 기기의 전력소모는 사용하는 네트워킹 기술에 따라 다르지만, 이 글에서는 스레드 기반 매터(Matter over Thread) 네트워크 솔루션에 중점을 두고 살펴보고자 한다. 스레드 기반 매터는 최적화된 전력소모를 필요로 하는 배터리 기반 기기에 적합한 솔루션이다. 기본적인 전력소모가 네트워킹 기술에 의해 결정된다 하더라도, 개발자들은 기기의 동작 시간과 빈도를 줄이고, 대부분의 시간을 초저전력 절전 상태로 유지하도록 함으로써 전력소모를 최소화할 수 있다. 하지만, 이 경우 한 가지 절충이 필요하다. 일반적으로 기기의 동작 시간을 제한하면, 전력소모는 줄일 수 있지만, 그만큼 응답성과 처리량이 저하된다. 따라서 개발자는 응답성과 전력소모를 모두 고려하여 특정 적용사례에 가장 적합한 최적의 구성을 찾아야 한다. 매터의
개요 이 글은 타입 2 전기차 충전 장비(electric vehicle supply equipment, EVSE) 설계에 초점을 맞추고 있다. EVSE를 설계할 때 따라야 하는 규정은 IEC 61851-1 표준에 명시되어 있으며, EVSE 타입 2 세부 규격은 보충 표준인 IEC 62752에서 확인할 수 있다. 이 글에서 제시하는 가이드라인은 이들 표준을 따르며, 아나로그디바이스(ADI)의 새로운 레퍼런스 디자인을 예시로 go 구체적으로 설명된다. 충전 세션 동안 전기차(EV)와 EVSE 간의 협상 과정은 제어 파일럿(control pilot, CP) 파형을 통해 나타나며, 표준에서 정의한 상태들을 중심으로 설명된다. 파형과 함께 제공되는 디버그 메시지는 가이드라인의 타당성을 입증하고 EV 충전 과정을 더 잘 이해할 수 있도록 도와주며, 그 결과 설계 과정을 보다 수월하게 만든다. 머리말 전기차 시장은 기하급수적으로 꾸준히 성장하며, 2030년까지 약 5억 대의 전기차가 도로 위를 달릴 것으로 예상된다. 국제에너지기구(IEA)가 발표한 데이터를 살펴보면, 이러한 수치는 현실적인 수치로 보인다. 예를 들어, 2022년과 2023년 사이 배터리 전기차(BEV)와
개요 전동화의 경제적 이점과 삶의 질 향상은 많은 시장에서 고전압(HV)에서 48V로의 변환 채택을 가속화하고 있다. 고전압에서 48V로 변환하는 통합형 전력 모듈은 배터리 전압이 증가함에 따라 EV 및 기타 애플리케이션에서 점점 더 보편화되고 있다. 이러한 시스템에서 양방향 고정비 버스 컨버터 모듈이 전력 공급을 최적화하는 방법을 알아본다. 양방향, 고 전력 밀도 DC-DC 컨버터는 다양한 산업 분야에서 기계 장치의 전동화가 제시하는 새롭고 까다로운 사용 사례에 이상적인 솔루션이다. 이 논문에선 고효율 고정비 DC-DC 컨버터 모듈이 액체 냉각의 비용과 복잡성 없이 일시적인 재생 부하를 지원할 수 있음을 보여준다. 전동화는 화석 연료 기반 기계에서 벗어나려는 사회적 흐름 속에서 산업 전반은 물론, 차량 및 항공우주/방위 장비 모든 분야로 확산되고 있다. 이 움직임을 주도하는 경제적 및 문화적 동인은 잘 알려져 있으며 일반적으로 이견이 없다. 전동화는 환경적 이점(예: 관련 탄소 배출량 감소)과 고토크 모터를 통해 전기 차량에서 높은 가속도를 가능하게 하는 등 핵심 성능 이점을 모두 제공한다. 270V에서 1,000V에 이르는 고전압 DC는 전원 공급원과 전