이제 제조 현장의 핵심 경쟁력은 자동화(Automation)의 양적 팽창에서 벗어난 또 다른 차원이다. 다양한 기술 트렌드에 대한 변동성과 이에 대응하는 속도에 의해 경쟁력이 결정되는 양상이다. 이 가운데 최근 수요 변동과 공급망 재편이 더욱 가속화되는 국면에서 공장은 고정된 설비 집합의 개념을 탈피해 유연한 운영 체계로 진화한 점이 포인트다. 설계 변경 사항이 생산 계획, 품질 검증, 안전 기준, 물류 동선 등에 즉각적이고 연쇄적으로 반영되는 구조가 핵심이다. 이 체계의 핵심 지표는 기존 주요 요소인 ‘생산성’뿐만 아니라, 전환 속도, 의사결정 지연 최소화, 추적 가능성, 예외 상황 시 복원력 등을 포괄하는 것으로 확장되고 있다. 이러한 변화의 중심에는 인공지능(AI)과 로보 공학(Robotics)이 있다. 이때 중심점은 기술 자체보다 지능을 실질적인 운영 프로세스로 고착시키는 방법론이다. 이에 따라 ▲AI 모델이 내린 판단의 승인 주체 ▲학습·검증 데이터의 활용 방식 ▲오류 격리 메커니즘 ▲안전 논리 증명 방식까지 포함해 공장의 규칙을 새롭게 정립하는 작업이 시작됐다. 이 같은 차세대 제조 인프라의 본질은 현장이 스스로 학습·보수하는 운영 메커니즘을 설계
이제 제조 현장의 핵심 경쟁력은 자동화(Automation)의 양적 팽창에서 벗어난 또 다른 차원이다. 다양한 기술 트렌드에 대한 변동성과 이에 대응하는 속도에 의해 경쟁력이 결정되는 양상이다. 이 가운데 최근 수요 변동과 공급망 재편이 더욱 가속화되는 국면에서 공장은 고정된 설비 집합의 개념을 탈피해 유연한 운영 체계로 진화한 점이 포인트다. 설계 변경 사항이 생산 계획, 품질 검증, 안전 기준, 물류 동선 등에 즉각적이고 연쇄적으로 반영되는 구조가 핵심이다. 이 체계의 핵심 지표는 기존 주요 요소인 ‘생산성’뿐만 아니라, 전환 속도, 의사결정 지연 최소화, 추적 가능성, 예외 상황 시 복원력 등을 포괄하는 것으로 확장되고 있다. 이러한 변화의 중심에는 인공지능(AI)과 로보 공학(Robotics)이 있다. 이때 중심점은 기술 자체보다 지능을 실질적인 운영 프로세스로 고착시키는 방법론이다. 이에 따라 ▲AI 모델이 내린 판단의 승인 주체 ▲학습·검증 데이터의 활용 방식 ▲오류 격리 메커니즘 ▲안전 논리 증명 방식까지 포함해 공장의 규칙을 새롭게 정립하는 작업이 시작됐다. 이 같은 차세대 제조 인프라의 본질은 현장이 스스로 학습·보수하는 운영 메커니즘을 설계