분자 시뮬레이션의 역할 분자는 물론, 그것을 구성하는 원자를 육안으로 관측하는 것은 불가능하다. 인간은 많은 측정기기의 개발을 통해 양자역학의 법칙이 지배하는 원자 수준 세계의 정보를 획득하려고 노력해 왔다. 인간이 가시광 영역의 빛을 이용해 시각을 획득하고 있다는 것을 생각하면, 빛(전자파)을 이용한 분광 측정기기는 당연한 귀결일지도 모른다. 분자 진동은 적외 영역의 에너지 대역을 가지며, 적외선을 통해 분자 진동의 관측이 가능하다. 자외·가시 영역의 빛은 분자의 전자 상태 에너지 대역에 해당하기 때문에 분자의 전자 상태 정보를 얻을 수 있다. X선과 같은 강력한 빛은 분자나 결정 중의 원자 간과 동일한 정도의 파장을 가지며, 이들을 관측하기 위해 이용된다. 또한 화학 실험실에서는 분자 구조를 해명하기 위해 핵자기공명(NMR)이 필수적이다. NMR은 자기장 중의 분자를 구성하는 원자핵이 전자장과 공명을 일으키는 주파수를 관측한다. 이러한 측정기기를 이용해 얻은 정보는 해독이 필요한 간접적인 것이다. 어떤 조건 하에서도 측정할 수 없고 측정 환경을 갖출 필요가 있다. 양자역학의 원리에서는 대상에 교란을 주지 않고 관측을 얻는 것은 불가능하다. 따라서 제한된
인하대학교는 김홍근 기계공학과 교수 연구팀이 리튬이온전지(LIB)의 충전 시간을 최대 20% 단축할 수 있는 충전 프로토콜을 제시했다고 17일 밝혔다. 연구팀은 급속충전 과정에서 발생하는 리튬 석출(Li-plating) 문제를 해결하는 데 초점을 맞췄다. 리튬 석출은 음극 표면에 리튬 금속이 달라붙는 현상으로, 전지 수명 저하와 함께 화재·폭발로 이어질 수 있는 주요 원인으로 꼽힌다. 이를 위해 연구팀은 전기화학-열 모델에 베이지안 최적화(BO)를 결합하고, 전압 상한·온도 상한·리튬 석출 전위 한계 등을 제약 조건으로 반영했다. 특히 충전 상태(SOC)를 0~40%, 40~80%로 나눠 각각 최적화하는 바이섹션(BS-BO-MCC) 전략을 적용해 기존 단일 구간 방식보다 충전 시간을 최대 11% 더 단축했다. 실험은 상용 55.6Ah 파우치셀을 활용해 진행됐으며, 모델과 실제 측정 결과가 높은 수준의 일치를 보였다. 전 구간에서 리튬 석출 안전 마진을 확보하면서도 급속충전을 구현했고, 표준 CCCV 충전 대비 계면막 성장과 리튬 침적이 현저히 줄어든 사실을 전자현미경·X선 광전자 분광법으로 확인했다. 또한 예열 조건을 병행한 시험에서 연구팀 프로토콜은 629