Factories of the future?
The ‘Factories of the Future’ PPP (public-private partnership) was launched in 2008 with a budget of €1.2 billion (Framework programme 7)

✓ To develop technologies, systems and processes to change our conception of manufacturing and even the factory itself,

✓ from highly networked manufacturing to localized production to re-manufacturing services

✓ Research challenges
 • Sustainable manufacturing
 – Environmental friendliness, Economic growth, Social well-being
 • High performance manufacturing
 – Flexible adaptive production equipment, systems and plants for rapid (re)configurations and optimal energy use
 – High precision micro-manufacturing machines and systems
 – Tools for production planning and in-situ simulation for open reconfigurable and adaptive manufacturing systems
 • Exploiting new materials through manufacturing
 • ICT-enabled intelligent manufacturing

* EFFRA (European Factories of the Future Association): a MANUFUTURE initiative
Factories of the Future: ICT Vision

Smart Factories:
- **Goal:** More automation, better control & optimisation of factory processes
- **Means:** Software, lasers & intelligent devices embedded in machines & factory infrastructure

Virtual Factories:
- **Goal:** To manage supply chains; to create value by integrating products & services
- **Means:** Software to holistically interconnect & manage distributed factory assets; new business models & value propositions

Digital Factories:
- **Goal:** To “see” the product before it is produced
- **Means:** Software for the digital representation & test of products & processes prior to their manufacture & use

Factory productivity
- Less waste
- Less energy use
- Faster time-to-market
- Better quality

Supply-chain productivity
- High-value products
- Keep jobs in Europe
- Process transparency
- IPR security
- Lower CO₂ footprint

Design productivity
- Reduce design errors
- Better & efficient products
- Less waste + rework
- Faster time-to-market
Factories of the Future PPP FoF 2020 Roadmap (Dec. 2012)

- The long term direction:
 - Factory and Nature → green / sustainable
 - Factory as a good neighbour → close to the customer
 - Factories in the value chain → collaborative (highly competitive products, IPPS)
 - Factory and Humans → human centred

- Research challenges
 - Manufacturing the products of the future
 - Economic sustainability of manufacturing
 - Reconfigurable, flexible, adaptive, small scale production, zero-defect, resource efficient, end-of-lifecycle
 - Social sustainability of manufacturing
 - Human, attractive workplace, workers
 - Environmental sustainability of manufacturing
 - Energy, pollution, new materials
FoF – Research & innovation priorities

- **Domain 1: Advanced Manufacturing processes**
 ✓ Innovative processing for both new and current materials or products
- **Domain 2: Adaptive and smart manufacturing systems**
 ✓ Innovative manufacturing equipment at component and system level, including mechatronics, control and monitoring systems
- **Domain 3: Digital, virtual and resource-efficient factories**
 ✓ Factory design, data collection and management, operation and planning, from real-time to long term optimisation approaches
- **Domain 4: Collaborative and mobile enterprises**
 ✓ Networked factories and dynamic supply chains
- **Domain 5: Human-centric manufacturing**
 ✓ Enhancing the role of people in factories
- **Domain 6: Customer-focused manufacturing**
 ✓ Involving customers in manufacturing value chain, from product-process design to manufacturing associated innovative services
FP7 Calls

II.5.1 'Factories of the Future' Public-Private Partnership (FoF) - Cross-thematic Coordination between NMP and ICT

II.5.1.1 'Factories of the Future (FoF)' - Public-Private Partnership

- FoF.NMP.2013-1 Improved use of renewable resources at factory level
- FoF.NMP.2013-2 Innovative re-use of modular equipment based on integrated factory design
- FoF.NMP.2013-3 Workplaces of the future: the new people-centred production site
- FoF.NMP.2013-4 Innovative methodologies addressing social sustainability in manufacturing
- FoF.NMP.2013-5 Innovative design of personalised product-services and of their production processes based on collaborative environments
- FoF.NMP.2013-6 Mini-factories for customised products using local flexible production
- FoF.NMP.2013-7 New hybrid production systems in advanced factory environments based on new human-robot interactive cooperation
- FoF.NMP.2013-8 Innovative strategies for renovation and repair in manufacturing systems
- FoF.NMP.2013-9 Advanced concepts for technology-based business approaches addressing product-services and their manufacturing in globalised markets
- FoF.NMP.2013-10 Manufacturing processes for products made of composites or engineered metallic materials
- FoF.NMP.2013-11 Manufacturing of highly miniaturised components

ICT for the Enterprise and Manufacturing

- FoF: Application experiments for robotics and Simulation
- FoF: Equipment assessment for sensor and laser based applications
미래제조시스템 키워드

- Smart
- Green
- Human
- Personalized, Workers, Elderly
- ICT, Connected, Decentralized, Reconfigurable
- Renewable, Reuse, Reduce
Industrie 4.0

- German high-tech strategy 2020 action plan – 10 Future Projects (3. 2012)
- From Jan. to Oct. 2012 (Working Group on Industry 4.0): 10 ~ 15 year time frame, EUR 200 million
- 4th Industrial Revolution?
 - Technological evolution from embedded systems to cyber-physical systems
 - From “centralized” to “decentralized” production
 - The parts know what they are
- Connected (Networked) : IoT, IoE, CPS
- By connecting machines, work pieces and systems, we are creating intelligent networks along the entire value chain that can control each other autonomously

Self-Organizing Factories

As information generated in the virtual world flows into real manufacturing processes, completely new production environments will emerge. In smart factories, communities of machines will organize themselves, supply chains will automatically coordinate with...
THE EVOLUTION OF EMBEDDED SYSTEMS INTO THE INTERNET OF THINGS, DATA AND SERVICES

Vision: Internet of Things, Data and Services
e.g. Smart City

Cyber-Physical Systems
e.g. intelligent networked road junction

Networked Embedded Systems
e.g. autonomous aviation

Embedded Systems
e.g. airbag

Source: Acatech 2011
Industry 4.0

- Vision:
 - **individualization** (batch sizes of 1) at mass production prices
 - manufacturing will be highly **flexible**, extremely **productive** (up to +50%), will use **fewer resources** (up to -50%) and will be compatible with an urban environment
 - **dynamic design** of business and engineering processes
 - **work-life balance** taking account of availability of individual workers
 - **older employees** supported by smart assistance systems
 - existing infrastructure can be **upgraded gradually**

http://www.plattform-i40.de
“Toward that concept of a connected world, where all of your devices are rolling up data, but you’re slicing it. It’s not the thousands of pieces of data; you’re slicing it in such a way that it is presented to the right user at the right time based on their role.”

“To me,” he says, “that’s the smart factory of the future.”

Jeff Immelt, CEO, General Electric
Working group members | Authors Technical experts

Authors
Communication Promoters Group of the Industry-Science Research Alliance:
Prof. Dr. Henning Kagermann
National Academy of Science and Engineering (Spokesperson of the Promoters Group)
Prof. Dr. Wolfgang Wahler
German Research Center for Artificial Intelligence
Dr. Johannes Helbig
Deutsche Post AG

acatech – National Academy of Science and Engineering

Contact details / Marketing
Office of the Industry-Science Research Alliance
beim Stifterverband für die Deutsche Wissenschaft
Ulrike Findelkle, M.A.
ulrike.findelkle@stifterverband.de
forchungsunion.de

Secretariat of the Platform Industrie 4.0
Lyoner Straße 9
60568 Frankfurt/Main
kontakt@plattform-i40.de
plattform-i40.de

Publication date: April 2013

Editors
Ariane Hellinger, M.A.
Veronica Stumpf, M.A.
With the assistance of: Christian Kobesda, b.t.A.
acatech – National Academy of Science and Engineering

Copy editing
Linda Treutgut, M.A.
acatech – National Academy of Science and Engineering

English translation
Joaquin Blasco
Dr. Helen Galloway

Layout and typesetting
HEILMEYER UND SERNAU GESTALTUNG
heilmeierunserenaun.com

Graphics
isotype.com

Co-chairs
Dr. Siegfried Dais, Robert Bosch GmbH
Prof. Dr. Henning Kagermann, acatech

WG spokespersons
WG 1 – The Smart Factory
Dr. Manfred Wittenstein, WITTENSTEIN AG

WG 2 – The Real Environment
Prof. Dr. Siegfried Russumw, Siemens AG

WG 3 – The Economic Environment
Dr. Stephan Fischer, SAP AG

WG 4 – Human Beings and Work
Prof. Dr. Wolfgang Wahler, DFKI
(German Research Center for Artificial Intelligence)

WG 5 – The Technology Factor
Dr. Heinz Dorenboch, Bosch Software Innovations GmbH

Members from industry
Dr. Reinhold Achats, ThyssenKrupp AG
Dr. Heinrich Arnold, Deutsche Telekom AG
Dr. Klaus Dräger, BMW AG
Dr. Johannes Helbig, Deutsche Post DHL AG
Dr. Wolfgang Jost, Software AG
Dr. Peter Leibinger, TRUMPF GmbH & Co. KG
Prof. Dr. Reinhard Plass, Infineon Technologies AG
Volker Smidt, Hewlett-Packard GmbH
Dr. Thomas Weber, Daimler AG
Dr. Eberhard Velt, Festo AG & Co. KG
Dr. Christian Zeidler, KBB Ltd.

Academic members
Prof. Dr. Reiner Andef, TU Darmstadt
Prof. Dr. Thomas Bauermans, Fraunhofer-Institute for Manufacturing Engineering and Automation
Prof. Dr. Michael Belgi, Karlsruhe Institute of Technology (KIT)

Guests
Dr. Andreas Goedeke, BMW (Federal Ministry of Economics and Technology)
Prof. Dr. Wolf-Dieter Lukas, BMBF (Federal Ministry of Education and Research)
Ingo Ruhmann, BMBF (Federal Ministry of Education and Research)
Dr. Alexander Tettenborn, BMW (Federal Ministry of Economics and Technology)
Dr. Clemens Zielonka, BMBF (Federal Ministry of Education and Research)

© Copyright reserved by the authors. All rights reserved. This work and all its parts are protected by copyright. Any use not explicitly permitted by copyright law shall require the written consent of the authors. Failure to obtain this consent may result in legal action. This applies in particular to reproductions, translations, microfilming and storage in electronic systems. The authors are not liable for the
Working group members | Authors Technical experts

<table>
<thead>
<tr>
<th>Authors</th>
<th>Technical experts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christoph Bier, Fraunhofer Institute of Optronics, System Technologies and Image Exploitation</td>
<td>Holding GmbH, Marc Wiesner, VDMA, Oliver Winzenried, WIBU-SYSTEMS AG, Steffen Zimmermann, VDMA</td>
</tr>
<tr>
<td>Willem Bultuijs, secunet Security Networks AG</td>
<td>„Regulatory framework“ workshop held on 28 January 2013 in Berlin for their input into chapter 5.7</td>
</tr>
<tr>
<td>Stefan Dittrich, HIMA Paul Hildebrandt GmbH & Co. KG</td>
<td>Till Barleben, ZVEI, Klaus Bauer, TRUMPF Werkzeugmaschinen GmbH & Co. KG, Dr. Georg Böttcher, Siemens AG, Alfons Bottorff, VDI/VDE Innovation + Technik GmbH, Susanne Dehml, BITKOM, Johannes Diemer, Hewlett-Packard GmbH, Kai Hofmann, Universität Passau, Prof. Dr. Gericht Hornung, Universität Passau, Sven Höttzsch, Universität Würzburg, Lars Kripko, BITKOM</td>
</tr>
<tr>
<td>Wolfgang Dorst, BITKOM (Federal Association for Information Technology, Telecommunications and New Media)</td>
<td>Dirk Hilgenberg, BMW AG, Bernd Karcher, Festo AG & Co. KG, Dr. Alexeane Ndiaye, DFKI (German Research Center for Artificial Intelligence), Dr. Detlef Pauly, Siemens AG, Tobias Phillip, IBM, Dr. Heinz-Jürgen Prokop, TRUMPF, Werkezeugmaschinen GmbH & Co. KG, Michael Wetzei, Daimler AG</td>
</tr>
<tr>
<td>Armin Glaser, Plz GmbH & Co. KG</td>
<td>in Frankfurt am Main for their input into chapter 5.4</td>
</tr>
<tr>
<td>Rainer Glatz, VDMA (German Engineering Federation)</td>
<td>Dr. Thomas Kauthmann, Infineon Technologies AG, Dr. Constanze Kurt, IG Metall, Dr. Ulrich Lüßen, Siemens AG, Veronica Stumpf, acatech</td>
</tr>
<tr>
<td>Chapter 5.4 Safety and security</td>
<td>Additional authors from the Working Groups: Vinay Aggarwal, Deutsche Telekom AG, Matthias Ankuft, DGB (Confederation of German Trade Unions), Dr. Dietmar Dengler, DFKI (German Research Center for Artificial Intelligence), Ulrich Dörl, Horag Holzbearbeitungssysteme GmbH, Dr. Gerhard Hammann, TRUMPF Werkzeugmaschinen GmbH & Co. KG, Andreas Haubert, TRUMPF Werkzeugmaschinen GmbH & Co. KG</td>
</tr>
<tr>
<td>Chapter 5.7 Regulatory framework</td>
<td>Dr. Dietmar Dengler, DFKI (German Research Center for Artificial Intelligence)</td>
</tr>
<tr>
<td>Working group members:</td>
<td>Ulrich Dörl, Horag Holzbearbeitungssysteme GmbH</td>
</tr>
<tr>
<td>Working group members:</td>
<td>Dr. Gerhard Hammann, TRUMPF Werkzeugmaschinen GmbH & Co. KG</td>
</tr>
<tr>
<td>Working group members:</td>
<td>Andreas Haubert, TRUMPF Werkzeugmaschinen GmbH & Co. KG</td>
</tr>
<tr>
<td>Working group members:</td>
<td>Dirk Hilgenberg, BMW AG</td>
</tr>
<tr>
<td>Working group members:</td>
<td>Bernd Karcher, Festo AG & Co. KG</td>
</tr>
<tr>
<td>Working group members:</td>
<td>Dr. Alexeane Ndiaye, DFKI (German Research Center for Artificial Intelligence)</td>
</tr>
<tr>
<td>Working group members:</td>
<td>Dr. Dietlef Pauly, Siemens AG</td>
</tr>
<tr>
<td>Working group members:</td>
<td>Tobias Phillip, IBM</td>
</tr>
<tr>
<td>Working group members:</td>
<td>Dr. Heinz-Jürgen Prokop, TRUMPF, Werkezeugmaschinen GmbH & Co. KG</td>
</tr>
<tr>
<td>Working group members:</td>
<td>Michael Wetzei, Daimler AG</td>
</tr>
<tr>
<td>Working group members:</td>
<td>Additional authors from the Working Groups: Vinay Aggarwal, Deutsche Telekom AG, Matthias Ankuft, DGB (Confederation of German Trade Unions), Dr. Dietmar Dengler, DFKI (German Research Center for Artificial Intelligence), Ulrich Dörl, Horag Holzbearbeitungssysteme GmbH, Dr. Gerhard Hammann, TRUMPF Werkzeugmaschinen GmbH & Co. KG, Andreas Haubert, TRUMPF Werkzeugmaschinen GmbH & Co. KG</td>
</tr>
<tr>
<td>Working group members:</td>
<td>Dirk Hilgenberg, BMW AG</td>
</tr>
<tr>
<td>Working group members:</td>
<td>Bernd Karcher, Festo AG & Co. KG</td>
</tr>
<tr>
<td>Working group members:</td>
<td>Dr. Alexeane Ndiaye, DFKI (German Research Center for Artificial Intelligence)</td>
</tr>
<tr>
<td>Working group members:</td>
<td>Dr. Dietlef Pauly, Siemens AG</td>
</tr>
<tr>
<td>Working group members:</td>
<td>Tobias Phillip, IBM</td>
</tr>
<tr>
<td>Working group members:</td>
<td>Dr. Heinz-Jürgen Prokop, TRUMPF, Werkezeugmaschinen GmbH & Co. KG</td>
</tr>
<tr>
<td>Working group members:</td>
<td>Michael Wetzei, Daimler AG</td>
</tr>
<tr>
<td>Working group members:</td>
<td>Additional authors from the Working Groups: Vinay Aggarwal, Deutsche Telekom AG, Matthias Ankuft, DGB (Confederation of German Trade Unions), Dr. Dietmar Dengler, DFKI (German Research Center for Artificial Intelligence), Ulrich Dörl, Horag Holzbearbeitungssysteme GmbH, Dr. Gerhard Hammann, TRUMPF Werkzeugmaschinen GmbH & Co. KG, Andreas Haubert, TRUMPF Werkzeugmaschinen GmbH & Co. KG</td>
</tr>
<tr>
<td>Working group members:</td>
<td>Dirk Hilgenberg, BMW AG</td>
</tr>
<tr>
<td>Working group members:</td>
<td>Bernd Karcher, Festo AG & Co. KG</td>
</tr>
<tr>
<td>Working group members:</td>
<td>Dr. Alexeane Ndiaye, DFKI (German Research Center for Artificial Intelligence)</td>
</tr>
<tr>
<td>Working group members:</td>
<td>Dr. Dietlef Pauly, Siemens AG</td>
</tr>
<tr>
<td>Working group members:</td>
<td>Tobias Phillip, IBM</td>
</tr>
<tr>
<td>Working group members:</td>
<td>Dr. Heinz-Jürgen Prokop, TRUMPF, Werkezeugmaschinen GmbH & Co. KG</td>
</tr>
<tr>
<td>Working group members:</td>
<td>Michael Wetzei, Daimler AG</td>
</tr>
</tbody>
</table>
16 companies, 10 institutes, 2 trade unions, 4 trade associations

Coordination: Siegfried Dais (Robert Bosch), Henning Kagermann (aca tech)

WG 2: Real Environment
- Siemens,
- Deutsche Telekom,
- ABB, Deutsche Post,
- RWTH Aachen,
- KIT, DGB

WG 1: Smart Factory
- Wittenstein,
- Trumpf,
- Daimler,
- VDMA,
- ZVEI,
- TUM,
- Fraunhofer IPA,
- wbk, KIT

WG 3: Economic Environment
- SAP, ABB,
- Hewlett-Packard,
- Software AG,
- IDS Scheer, BDI,
- BIBA Universität Bremen

WG 4: Human Beings & Work
- BMW, Festo, ZVEI,
- VDMA, DFKI,
- TU Darmstadt, DGB

WG 5: Technology Factor
- Robert Bosch, Infineon,
- Bitkom, TU München,
- Universität Oldenburg,
- Universität Bremen
Opportunities by industry 4.0

- Flexible manufacturing: transparent process, respond quickly to change
- Individual production: quickly react to individual customer-specific requirements, Complicated reprogramming is not necessary
- Innovative business models: new services, big data
- New jobs

- High competitive strength: leading international supplier in the area of embedded systems (Germany will become a leading supplier for 2020 "Cyber-Physical Production Systems")
Industrie 4.0

✓ Dual Strategy & Key Features:
 • Becoming a leading supplier: equipment supplier industry,
 • Becoming a leading market: German domestic manufacturing industry

 • Horizontal Integration (Inter-company value chain)
 • Digital end-to-end engineering (Lifecycle)
 • Vertical integration (Networked mfg.)

by CPS
Beckhoff implements open automation systems based on PC Control technology. The product range covers Industrial PCs, IO and Fieldbus Components, Drive Technology and automation software. Products that can be used as separate components or integrated into a complete and seamless control system are available for all industries. The Beckhoff "New Automation Technology" philosophy represents universal and open control and automation solutions that are used worldwide in a wide variety of different applications, ranging from CNC-controlled machine tools to intelligent building automation.

Beckhoff Automation
Factories of the future?
Smart?
 미래제조시스템 키워드

ICT, Connected, Decentralized, Reconfigurable

Smart Human

Personalized, Workers, Elderly

Renewable, Reuse, Reduce
Modular design & Mini-factories
Mini-factories for customised products using local flexible production

- needed to enable *ultra-fast and cost-effective manufacturing of fully customised products on the spot and exactly at the required time*
- manufacturing operations closer in time and space to the final customer
- Those mini-factories, addressing adaptation to customer needs at or near the point of sales or use, will be characterised by *fast ramp-up, small footprint and reusability*, and will be *easy to handle and to set-up*.
Modular Design

- Component-sharing modularity
- Component-swapping modularity (different options, e.g. power/manual door locks and window of cars)
- Cut-to-fit modularity (parameters or features can be adjusted)
- Platform modularity

Benefits of late Point of Product Differentiation

- Easier to control
- Faster reaction to customer requirement
- Lower inventory costs
- Fewer interfaces
Voice of Workers
제조산업 키워드의 변화

- 통합화
- CIM
- 자동화
- 공정혁신
- 원가절감
- 무인화
- 납기단축
- 과거/현재
- 기계중심 (인간 소외, 생산성 중심)
- 미래
- 기술중심 (기술력, 디자인, 제품, 생산)
- 인간중심 (인간친화, 생산성 중)
- 한국형 미래제조시스템 융합/원천/시스템 기술

Manufacturing Keywords

- 통합화
- CIM
- 자동화
- 공정혁신
- 원가절감
- 무인화
- 납기단축
- 과거/현재
- 기계중심 (인간 소외, 생산성 중심)
- 미래
- 기술중심 (기술력, 디자인, 제품, 생산)
- 인간중심 (인간친화, 생산성 중)
- 한국형 미래제조시스템 융합/원천/시스템 기술

제조업에 대한 인식 변화 ➔ 창조적 미래경제 주도

- 캠판혁신 (0ppm)
- 생산성향상
- 원가절감
- 납기단축
- 공정혁신
- 6 Sigma
- 원가절감
- 무인화
- 납기단축
- 과거/현재
- 기계중심 (인간 소외, 생산성 중심)
- 미래
- 기술중심 (기술력, 디자인, 제품, 생산)
- 인간중심 (인간친화, 생산성 중)
- 한국형 미래제조시스템 융합/원천/시스템 기술

친환경 = Green (Eco-friendly)
지속가능 (Sustainable)

ICT 기반 (Cloud, Big data)
Smart MES

“The parts know what they are”
MES 3-Layers

1st layer: Resources & Drivers
- Material handler, Actuator, Sensor, ...

2nd layer: Control Channel
- Industrial PC, PLC, Embedded controller, Smart controller, Bus terminal, Relay, ...

3rd layer: Monitoring & Management
- Fault resolution
- Operation monitoring
- Performance analysis
- Quality management
- etc.

Inter-Comm. Interface
- Ethernet (IEEE 802.3)
- Wireless (IEEE 802.11)
- Legacy comm. Protocols: RS422, RS485
- OPC-UA
- Agent language (KIF)

Intra-Comm. Interface
- RFID, NFC
- Legacy comm. Protocols: RS232C
Shop floor control level의 기존 레퍼런스 모델 표준

ISO/TR-10314: Industrial automation – shop floor production
- PART I: Reference model for standardization and a methodology for identification of requirements, 1990
- PART II: Application of the reference model for standardization and methodology, 1991
Design from Failure & Design for Traceability

설계-서비스 Inter-loop 정보 통합: 제품 재설계를 위한 운용(사용) 정보

설계

제조(시공)

서비스

설계 Intra-loop 정보: 최적/ 신속 (재)설계

설계-제조 Inter-loop 정보 통합: Design for manufacture/assembly

제조 Intra-loop 정보: 공정 모니터링 및 예지보전, 스마트 MES

제조-서비스 Inter-loop 정보 통합: 공정재설계 및 검사시스템 개선

제품 운용 및 품질 문제 정보

서비스 Intra-loop 정보: 원격진단 및 유지관리, Operation Intelligence

공정 1 → 공정 2 → 공정 n

생산이력 및 품질검사 정보